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1.1 Objective 
 
HOT languages are characterized as being "Higher-Order" and "Typed," two characteristics that 
greatly facilitate the development of evolvable, modular software.  This project bases its work 
on the use of HOT language technology, with particular focus on the application and 
implementation aspects of the technology.  In addition, the project focuses on the use of 
domain-specific embedded languages and rincipled interoperability.  Most of the work is being 
done in the context of the HOT languages ML and Haskell.  
 

1.2 Approach 
 
This work is divided into three inter-related areas:  software architecture, HOT infrastructure, 
and domain-specific embedded languages (DSEL).  
 
In the area of software architecture, the project focuses on extending the ACME architectural 
description language with powerful features from the HOT language community. Two extensions 
are currently being investigated, one involves extending ACME with higher-order functions to 
support parameterized architectures in a more general way than templates; another involves 
extending ACME with user-defined constraints. Higher-order functions are useful for expressing 
complex architectures in a concise and simple manner; constraints allow many forms of program 
analysis to be captured through the use of domain-specific constraint solvers.  
 
In the area of HOT infrastructure, the project focuses on two areas:  First is the implementation 
of the FLINT system. FLINT is a common typed intermediate language that models the 
semantics and interactions of various HOT language features. It provides a common compiler 
backend that can be quickly adapted to generate compilers for new HOT languages. With its 
single unified type system, FLINT serves as a great platform for reasoning about cross-language 
interoperations.  It can also serve as more powerful executable content than Java VM code, 
making all HOT programs Internet ready.  
 
Another aspect of our HOT infrastructure is the implementation of HUGS, considered to be the 
premier programming environment for Haskell users.  At the core of HUGS is a byte-code 
interpreter whose fast compilation times make it very popular.  We are collaborating with the 
Universities of Glasgow and Nottingham to combine this flexible core with a GHC, considered 
the best compiler for Haskell.  With the resulting merger, one will be able to mix interpreted and 
compiled code, just as in a traditional Lisp environment.  
 
Finally, abstraction is arguably the most important factor in writing evolvable, modular software.  
But the ultimate abstraction for a particular application is a domain specific language: a 
programming language specifically tailored to the application, with which a person can quickly 
and effectively develop a complete software system. Unfortunately, designing and implementing 
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a new language is difficult, and furthermore, we can expect the language itself to evolve. Thus 
this project begins with the idea of inheriting the infrastructure of some other (HOT) languages--
-tailoring it in special ways to the domain of interest---thus yielding a domain specific embedded 
language (DSEL). The language FRAN (functional reactive animation) is one such example---
designed for creating richly interactive, multimedia animations.  FRAN is embedded in Haskell, 
but has the distinct look and feel of a completely new language.  
 

1.3 Recent FY-1999 Accomplishments 
 
Extended FLINT to support Java type system. Designed a conservative extension of the 
polymorphic lambda calculus (Fomega) as an intermediate language for compiling languages 
with name-based class and interface hierarchies. The extension enables the safe interoperation 
between class-based and higher-order languages and the reuse of common type-directed 
optimization techniques, compiler back ends, and runtime support. A paper entitled 
"Representing Java classes in a typed intermediate language" is to appear in 1999 ACM 
International Conference on Functional Programming (ICFP99).   
 
Designed and implemented a cross-module inlining and specialization algorithm in the FLINT 
compiler. The new algorithm can guarantee inlining of functions across arbitrarily functorized 
code while still reserving separate compilation.  
 
Developed a reference implementation for Functional Reactive Programming.  This 
implementation has simple, easily understood semantics and may serve as a formal definition of 
one possible semantics for Functional Reactive Programming.  
 
Completed the merger between Hugs and GHC. Developed a new runtime system to support 
interoperation between compiled GHC code and interpreted Hugs code.  Released a new 
version of Hugs, compliant with the new Haskell 98 standard.  
 

1.4 Technology Transition 
 
The FLINT infrastructure has been recently incorporated into the SML/NJ program 
environment --- a production system jointly developed by Lucent, Princeton, Yale, and AT&T. 
Both FLINT and SML/NJ are now being used worldwide by large number of software 
developers (including the DARPA-supported projects such as the Fox project at CMU and the 
Zephyr project at U. Virginia and Princeton). 
 
FRAN is being developed in collaboration with researchers at Microsoft, whose interest relates 
not just to easing graphics and animation programming, but also as a viable method for 
programming Talisman, their new sprite-based 3D graphics hardware. 
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Hugs is being used world-wide by hundreds of users.  Most of these users are academic 
researchers, many are using it for teaching, but only some are using it in industrial settings.  
Hopefully, this latter category will increase, especially with the improvement in web functionality. 
 

1.5 A Chronological List of Written Publications 
     
    Haskore Music Tutorial, by Paul Hudak, in Advanced Functional 
    Programming, Springer Verlag LNCS 1129, pp. 38-68, August 1996. 
     
    Rolling Your Own Mutable ADT---A Connection between Linear Types and 
    Monads, by Chih-Ping Chen and Paul Hudak, in Proceedings of 24th ACM 
    Symposium on Principles of Programming Languages, January 1997. 
     
    Type Inference with Constrained Types, by Martin Sulzmann, Martin Odersky  
    and Martin Wehr, in Proceedings of the FOOL'97 (Foundations of Object- 
    oriented Languages) Workshop, January 1997. 
     
    Report on the Programming Language Haskell (version 1.4), 
    by John Peterson (editor). Research Report YALEU/DCS/RR-1106,  
    Yale University, April 1997. 
     
    Standard Libraries for the Programming Language Haskell (version 1.4), 
    by John Peterson, Research Report YALEU/DCS/RR-1105, Yale University,  
    April 1997. 
     
    The RBMH User Guide, by John Peterson and Gary Shu Ling. April 1997. 
     
    Hugs 1.4 User Manual, by Mark P. Jones and John C. Peterson, Yale 
    University, Department of Computer Science, Research Report 
    YALEU/DCS/RR-1123, 1997. 
     
    Principled Dynamic Code Improvement, by John Peterson, Paul Hudak, and 
    Gary Shu Ling, Yale University, Department of Computer Science, 
    Research Report YALEU/DCS/RR-1135, July 1997. 
     
    Functional Reactive Animation, by Paul Hudak and Conal Elliott, in 
    Proceedings of 1997 International Conference on Functional 
    Programming, June 1997. 
     
    Flexible Representation Analysis, by Zhong Shao, in 
    Proceedings of 1997 International Conference on Functional 
    Programming, June 1997. 
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    An Overview of the FLINT/ML Compiler, by Zhong Shao, in 
    Proceedings of 1997 ACM SIGPLAN Workshop on Types in  
    Compilation, June 1997. 
     
    Green Card:  A Foreign Language Interface for Haskell, by Alastair Reid, 
    Simon Peyton Jones, and T. Nordin, in Proceedings of the 1997 Haskell  
    Workshop, Amsterdam, the Netherland, June 1997. 
     
    Typed Common Intermediate Format, by Zhong Shao, in  
    Proceedings of 1997 Usenix Conference on Domain Specific 
    Languages, October 1997 
     
    Modular Domain Specific Languages and Tools, by Paul Hudak, submitted 
    to 1998 International Conference on Software Reuse, October 1997. 
     
    An Intermediate Meta-Language for Program Transformation, by Mark 
    Tullsen and Paul Hudak, submitted to 1998 ACM Symposium on Programming 
    Language Design and Implementation, November 1997. 
     
    Implementing Typed Intermediate Languages by Zhong Shao,  
    Christopher League, Stefan Monnier, Bratin Saha, and Valery Trifonov, 
    submitted to 1998 ACM Symposium on Programming Language Design and  
    Implementation, November 1997. 
     
    Type Inference with Constrainted Types, by Martin Odersky,  
    Martin Sulzmann and Martin Wehr, invited submission to Journal of 
    TAPOS (Theory and Practice of Object Systems), October 1997. 
     
    First-Class Schedules, by Rajiv Mirani and Paul Hudak, being submitted 
    to ACM Transactions on Programming Languages and Systems, November 1997. 
     
    Efficient and Safe-for-space Closure Conversion, by Zhong Shao 
    and Andrew Appel, being submitted to ACM Transactions on Programming  
    Languages and Systems, December 1997. 
     
    Flexible Representation Analysis, by Zhong Shao, being submitted 
    to ACM Transactions on Programming Languages and Systems,  
    December 1997. 
 
    Typed Cross-Module Compilation, by Zhong Shao, being submitted 
    to Journal of Functional Programming, December 1997. 
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1.6 Additional Information 
 
Figure 1 is a quad chart describing the technology.  Additional project information can be found 
at the following website:   http://www.cs.yale.edu/edcs 
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